CapSense™ Best Practices

AN2394

Author: Mark Lee
Associated Project: No
Associated Part Family: CY8C20x34, CY8C21x4, CY8C24x94
Software Version: PSoC Designer™ 4.3
Associated Application Notes: 2233a, 2292, 2360, 2318, 2403

Application Note Abstract
This application note presents best practices for designing CapSense™ systems. The topics covered include an overview of sensing methods, guidelines for layout and assembly, and CapSense tools and techniques.

Introduction
Adopting capacitive sensing as an interface technology in high-volume, high-visibility applications such as portable media players and mobile handsets has created demand for this technology in more conventional consumer electronics. This demand has led to significant innovation, and several competitive technologies are available. While these technologies each have their respective differences, the underlying principle is the measurement of capacitance between a plate (the sensor) and its environment.

Compared to modules and fixed-function ICs, programmable ICs allow more flexibility in design as custom code is used to develop solutions. PSoC® CapSense combines a microcontroller, configurable digital and analog resources, on-board memory, and other features that allow flexibility in capacitive system design. This application note gives an overview of best practices for CapSense design.

The PSoC architecture allows designers to incorporate multiple capacitive sensing design elements into an application. Buttons, sliders, touchpads, and proximity detectors are supported simultaneously with the same device in the same circuit. Use PSoC to scan capacitive sensors and use the activation status to drive LEDs, control a motor, drive a speaker, and so on, as shown in Figure 2.

Figure 2. Sample Application with CapSense Plus: Motor, LED, and Speaker with a Single PSoC

Figure 1. PSoC Analog and Digital Blocks Configured for CapSense Plus
Easy-to-Configure Capacitive Sensing Solutions

PSOC implements different methods of CapSense, configured through firmware (see Reference [1]), including CSA and CSD.

CSA Sensing Method

CSA stands for CapSense with Successive Approximation. CSA is only implemented in the CY8C20x34 PSoC device family.

A block diagram of the CSA configuration is shown in Figure 3. CSA operates as follows:

Switches SW_1 and SW_2 and the CapSense sensor C_X, form a switched capacitor network with an equivalent circuit of a resistor to ground. With the iDAC set to a calibrated level, and SW_1 and SW_2 switching, the average voltage on C_MOD settles at a level that varies with the value of C_X. By setting the iDAC to a low current level, with SW_2 open, the voltage on C_MOD ramps up. The time for the ramp voltage on C_MOD to reach V_REF is an indication of the value of C_X. The timer on the output of the comparator converts the ramp time to a digital value.

Self-calibration of the system is accomplished through a successive approximation binary search to determine the iDAC setting necessary to keep voltage on C_MOD at V_REF when no finger is present. Individual calibrated iDAC settings are stored for all sensors.

When a finger is present, the voltage on C_MOD settles at a lower voltage, requiring more time to reach the threshold voltage V_REF, as shown in Figure 4. If (t2–t1) is long enough, the sensor is in Finger Present state, otherwise the sensor is in Finger Absent state.

An internal capacitor, programmable up to 100 pF, is used for C_MOD, but a larger external capacitor improves performance: 1nF–4nF for buttons and sliders. CSA is not recommended for proximity sensors.

CSD Sensing Method

CSD stands for CapSense with Sigma-Delta A/D. CSD is implemented in both CY8C21x34 and CY8C24x94 PSoC device families.

A block diagram of the CSD configuration is shown in Figure 5. CSD operates as follows:

Switches SW_1 and SW_2 and the CapSense sensor C_X, form a switched capacitor network with an equivalent circuit of a resistor between V_DD and C_MOD. The equivalent resistor has a value controlled by C_X. The switching of SW_1 and SW_2 is controlled by the pseudo-random sequence of the PRS generator. The PRS lowers noise susceptibility and radiated emissions compared to a fixed period clock source. SW_3 operates asynchronously from SW_1 and SW_2. When R_B is switched to ground, the voltage on C_MOD decreases. When R_B is open, the voltage on C_MOD increases. The comparator changes state based on the voltage on C_MOD relative to V_REF.
A Sigma-Delta A/D is formed by the addition of a 16-bit timer to measure comparator high-time to comparator low-time.

When a finger is present, C_X is larger and the equivalent resistor to V_{DD} is smaller, allowing more current to flow into C_{MOD}. The comparator spends more time in the CMPHIGH state and less time in CMPLOW. If the ratio CMPHIGH:CMPLow is high enough, the sensor is in Finger Present state, otherwise the sensor is in Finger Absent state, as shown in Figure 6.

Figure 6. CSD Waveform Changes with Finger Absent and Present

<table>
<thead>
<tr>
<th>Comparator Output</th>
<th>Finger Absent</th>
<th>1.2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Comparator Output</th>
<th>Finger Present</th>
<th>5.4</th>
</tr>
</thead>
</table>

A C_{MOD} value between 1nF–100nF is recommended. R_B requires tuning to sensors for optimal performance, (between 2K and 10K.) R_B is selected so that the CapSense counts without a finger are between 60% and 80% of the maximum counts for the selected CSD resolution.

A PSOC Placement: It is good practice to minimize the distance between the PSOC and the sensors. Typically, the PSOC is mounted on the bottom layer along with the other components and the CapSense sensor pads are placed on the top layer.

Board Layers: The most common PCB format is two layers with sensor pads and gridded ground plane on top and everything else on the bottom. Four layer boards are used when board area must be minimized. Do not route traces directly under sensor pads.

Figure 7. Two Layer Stack-Up for CapSense Boards

Board Thickness: FR4-based designs are found to perform well with standard board thickness ranging from of 0.020" (0.5 mm) to 0.063" (1.6 mm). See Flex Circuits for guidelines.

Trace Length and Width: The parasitic capacitance of the traces and sensor pad, C_P, is minimized to make the dynamic range of the system as large as possible. C_P is minimized by short and narrow traces. How long can the traces be? The longest traces in a successful CapSense product are 9" (230 mm) for a slider, and 12" (300 mm) for a button. (This extreme example requires large sensing pads and a thin overlay to maximize the signal from the sensor.) Trace width adds to the sensor C_P and increases coupling to elements on other layers. Trace widths of 0.0065"–0.008" (0.17–0.20 mm) suffice for most applications.

Vias: Use the minimum number of vias consistent with routing of the CapSense inputs to minimize C_P. The placement of the via is done at any location on the sensor pad, as shown in Figure 8.

Figure 8. Via to Sensor Pad can be Anywhere on the Pad (Trace on Bottom Layer, Sensor Pad on Top Layer)
Communication Lines: Do not run capacitive sensing traces in close proximity with and parallel to high-frequency communication lines, such as I2C or SPI. If it is necessary to cross communication lines with sensor pins, be sure the intersection is orthogonal. One effective method of reducing the interaction between communication traces and sensor traces is to isolate each by port assignment. Port pins P1[0] and P1[1] are used for programming and I2C. If they are not used for these purposes, then they are assigned to CapSense. Series resistors are recommended in-line with all CapSense inputs (560 ohms) and series with communication lines such as I2C, SPI, and so on (300 ohms) to prevent RF interference.

Ground Fill: When ground fill is added near a CapSense sensor pad, there is a trade-off between maintaining a high level of CapSense signal and increasing noise immunity of the system. Typical hatching for the ground fill is 15% on the top layer (7 mil line, 45 mil spacing), and 10% on the bottom layer (7 mil line, 70 mil spacing), as shown in Figure 9.

Figure 9. Partial Ground Fill to Minimize C_p

Overlay Thickness: Table 1 lists the recommended maximum overlay thicknesses for PSoC CapSense applications (plastic overlay). The dielectric constant plays a role in how thick the overlay is. Common glass has a dielectric constant around $\varepsilon_r = 8$, while plastic is around $\varepsilon_r = 2.5$. The ratio of $\varepsilon_r / 2.5$ is an estimate of how thick the overlay is, relative to plastic for the same level of sensitivity. Using this rule of thumb, a common glass overlay is about three times as thick as a plastic overlay for the same sensitivity.

Table 1. Recommended Plastic Overlay Thickness for CapSense

<table>
<thead>
<tr>
<th>Design Element</th>
<th>Overlay Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Button</td>
<td>< 5 mm</td>
</tr>
<tr>
<td>Slider</td>
<td>< 2 mm</td>
</tr>
<tr>
<td>Touchpad</td>
<td>< 0.5 mm</td>
</tr>
</tbody>
</table>

Both signal and noise are affected by the overlay properties. As the thickness of the overlay increases, signal and noise both decrease. Signal is defined as the difference in average sensor output between the Finger Absent and Finger Present states. Noise is defined in the peak-to-peak deviation in sensor output in the Finger Absent state. A representative plot of CapSense signal versus overlay thickness is shown in Figure 10.

Figure 10. Signal Level Drops Off as Overlay Thickness Increases

Overlay Adhesive: Overlay materials must have good mechanical contact with the sensing PCB. Two widely used non-conductive adhesives for overlays are 467MP and 468MP, made by 3M.

Gloves: If the sensors work with a gloved hand, then add the thickness of the glove material to the total overlay stack-up when sizing the buttons. Dry leather and rubber are similar to plastic with a dielectric constant of 2.5–3.5. Ski gloves have a dielectric constant of 2 or less, depending on the air content of glove’s thermal insulation.

LED Backlighting: CapSense works well with LED backlighting. Just cut a hole in the sensor pad. Keep LED traces on the bottom of the board.

Multiple PSoCs on One PCB: For systems with many buttons, such as a keyboard, the system design may require two or more PSoCs dedicated to CapSense. If this is the case, partition buttons so that a ground fill area separates the traces of each button group. This prevents coupling between the independent CapSense groups.
Buttons
The function of a button is to determine the presence or absence of a conductive object. A typical application of a CapSense button is to sense the presence of a finger.
Shape: The recommended shape for sensing a finger press is a solid round pattern as shown in Figure 11.
Figure 11. Recommended Button Shape is Solid Round Pattern

The capacitance, \(C_P \), decreases as the clearance surrounding the button is increased. An example of this dependence of \(C_P \) on the gap is shown in Figure 12 for three button sizes (5 mm, 10 mm, and 15 mm diameter).
Figure 12. \(C_P \) as a Function of Button-Ground Clearance and Button Diameter (0.062" Thick, FR4)

Round buttons must be at least 5 mm in diameter, and rectangular buttons must have at least one dimension greater than 6 mm. The size of the button is selected to meet the minimum signal-to-noise ratio (SNR) requirement of 5:1 (see Reference [5]). The thicker the protective overlay, the larger the button diameter should be.

Sliders
A slider is a sensor array. Changes between adjacent capacitive elements are used to determine the position of a conductive object. Position is determined in firmware using a centroid (center of mass) calculation.

The slider segments must be small enough so that multiple segments couple with each finger position, yet large enough to produce the required signal level through the overlay. A sawtooth pattern works well for sliders, with a minimum of five segments. Each finger position on the slider produces a usable signal on at least three segments. The maximum length of the slider is only limited by the available IO pins of the PSoC and the required report rate for the system. A typical slider pattern is shown in Figure 14. The sensor output is represented by a bar graph above each slider segment.
Figure 14. Sawtooth Pattern Used With Slider Sensor Pattern
Slider Diplexing: If IO pins are at a premium, connecting two slider segments to a single PSoC pin increases the number of slider segments that are sensed by the PSoC by two-fold. The CapSense User Module Wizard allows the user to select this as an option for pin assignment, and the User Module API determines the correct half of the slider that the finger is touching. Connecting each CapSense input pin to two slider elements doubles C_P without any increase in signal.

Touchpads

The CapSense User Module does not directly support touchpads. Touchpads are implemented as two independent sliders. All the guidelines that apply to sliders also apply to touchpads.

Figure 15. Touchpads with CapSense Sliders X and Y

An example of a good CapSense touchpad is a commercially successful design with 20-position column slider (X) and 10-position row slider (Y). A total of 30 pins are assigned as CapSense inputs. The dimensions of the active area are 3.9" x 1.9" (99 mm x 47 mm). The overlay is 0.010" (0.25 mm) ABS plastic. The row and column sensors are spaced with a pitch of 0.2" (5 mm). The baseline noise level is a single count in the Finger Absent state. A finger on the touchpad produces a difference signal of 15 counts, which results in an SNR of 15:1. Setting the centroid algorithm to resolve 20 positions between each row pair and each column pair, this touchpad system has a resolution of 100 counts per inch.

Proximity Sensors

The CapSense User Module does not directly support proximity sensors. A proximity sensor is implemented as a CapSense button with large C_P and small difference counts. A dedicated proximity sensor is best implemented as a single length of wire, as demonstrated in Figure 16. Connecting button and slider sensors already on the CapSense PCB into a single large sensor is another technique for implementing a proximity sensor. CSD is the best method to use for proximity sensing. CSD performs better than CSA with large CP values, and the shield feature of CSD is used to extend the detection distance of the sense wire.

Figure 16. Rear View of a Proximity Sensor Prototype

Flex Circuits

Flex circuits work well with CapSense. All the guidelines presented for printed circuit boards also apply to flex. A flex circuit is typically much thinner than a PCB. Limit C_P by making the flex circuit no thinner than 0.01" (0.25 mm), and limiting trace lengths to a few inches. One good feature of flex is the high breakdown voltage provided by the Kapton material (290 KV/mm).

ITO Touch Screens

ITO is an acronym for Indium Tin Oxide. Films of this ceramic material are both electrically conductive and visually transparent. An example ITO touch screen is shown in Figure 17. Sheet resistivity of ITO films range from 0.25–1000 ohms/square, with the typical value of 100–500 ohms/square. Film thickness determines the sheet resistivity. Thinner film passes more light and has higher resistance.

Touch screens operate in either resistive or capacitive modes. Both modes have their niche markets. Resistive mode requires pressure for contact between conductive layers, and is prone to wear, tear, and breakage. Resistive mode is a four layer solution with poor transparency (<75%). Capacitive mode makes use of the finger as a conductive object. Capacitive mode is a one layer or two layer solution with high transparency (>90%). Cypress supports both touch screen technologies.

Figure 17. ITO Touch Screen
From Concept to Production:
CapSense Tools and Techniques

Evaluation Boards and Example Firmware

The CY3213 board, shown in Figure 18, is an evaluation board for development of CapSense applications. Application firmware is written in ‘C’. A library of common functions makes development of projects as simple as writing a few lines of code.

Figure 18. CY3213—CapSense Training Evaluation Board

Here is an example of the code required to scan two sensors in an array of buttons and save the result in an I2C array.

Code 1. Code to Scan Sensors

 // starting with sensor0, scan 2 sensors, single scan mode,
 SensorArray_StartScan(0,2,0);

 //scan complete?
 while (!(SensorArray_GetScanStatus() &
 SensorArray_SCAN_SET_COMPLETE));

 //save sensor0 and sensor1 results in i2c array
 info.iRawCount[0] =
 SensorArray_iwaSnsResult[0];
 info.iRawCount[1] =
 SensorArray_iwaSnsResult[1];

Baseline Technique

The baseline is the reference for CapSense measurements. Each capacitive sensor has its own baseline. The baseline is a trend line for the capacitive sensor data that is computed by the Baseline function of the CapSense User Module. The raw count data is processed using an Infinite Impulse Response (IIR) low pass filter as shown in Figure 19. High level decisions, such as Finger Present and Finger Absent states, are based on the reference level established by the baseline.

Environmental Effects

Temperature and Humidity: Temperature and humidity both cause the baseline counts to drift over time. The CapSense User Module is characterized from -40ºC to +85ºC, as shown in Figure 20. The trend that is tracked by the baseline automatically compensates for the effects of temperature and humidity.

Figure 20. Temperature Variation

Water: CSD is the method to use if the sensing surface is exposed to a water stream or droplets. In this case, the shield electrode is enabled in the CSD User Module. When water film deposits on the overlay surface, the coupling between the shielding and sensing electrodes is increased. The shield electrode allows you to reduce the influence of parasitic capacitance, which gives more dynamic range to process sense capacitance changes.
Power Consumption and Sleep

Battery life is determined by mA-hours. The lower the average current, the longer CapSense operates between recharges (see Reference [3]). The PSoC is programmed such that it has different modes of power consumption:

- A fast response mode during intervals of constant button presses.
- A power saving, slow response mode after a period of inactivity.
- A deep sleep mode after a longer period of inactivity.

One of the strengths of PSoC, as compared to other capacitive sensing solutions, is its programmability. You can make the power saving modes of CapSense as sophisticated as required. CapSense buttons are fast, taking as little as 200 microseconds for each button scanned. This high scan speed is combined with a low sleep current to achieve very low average currents. One example of the real CapSense system is power saving, slow response mode using a three button scan every 100 milliseconds, while consuming less than 50 µA of average current.

Noise Filtering

Noise is introduced into the CapSense system through both conductive and radiated sources. Conductive noise enters the system through power and signal lines. Radiated sources, such as cell phones or fluorescent lamp ballasts, introduce noise through the air. Filtering techniques in firmware is used to increase the signal-to-noise ratio of the CapSense system in the presence of both types of noise. PSoC implements Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) digital filters with only a few lines of code.

FIR Filter: The frequency of finger pressing events is low compared to the frequency of power line noise. A low pass filter (LPF) is an effective noise filtering solution for this situation. An FIR LPF is defined by:

\[y = \frac{x_1 + x_2 + \ldots + x_N}{N} \]

Equation 1

Raw counts are sampled N times per cycle of the noise. The N samples are combined together per Equation (1). With 50 Hz noise, the sample period must be 18 ms/N. The performance of the FIR filter increases with N, so make N as large as the system allows.

IIR Filter: An FIR filter has a disadvantage in that it needs to be a much higher order than an IIR filter to get the same result. It may also be difficult to adjust the sample rate to fit the period of the noise. So, in some cases, an IIR filter is a more appropriate choice for the LPF. Table 2 compares the FIR and IIR filters.

<table>
<thead>
<tr>
<th>Filter Type (order=N)</th>
<th>RAM</th>
<th>Response Time</th>
<th>Always Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIR LPF</td>
<td>1</td>
<td>N*T</td>
<td>Yes</td>
</tr>
<tr>
<td>IIR LPF</td>
<td>N^2</td>
<td>T</td>
<td>No</td>
</tr>
</tbody>
</table>

RF Immunity Considerations

RF interferes with the operation of any capacitive sensing system, including CapSense (see Reference [4]). Where the electric field strength is high enough, RF interference causes false button presses or prevents real button presses from being sensed. A cell phone is a good example of where an RF transmitter and buttons are purposely combined in close proximity.

The electric field strength at a distance greater than 1/6 of a wavelength from a transmitter is approximated by Equation 2.

\[E = 6.85 \times \frac{\sqrt{10^{(P/10)}}}{D} \]

Equation 2

- E [volts/meter] is the electric field.
- P [dBm] is the RF power fed to antenna.
- D [inches] is the distance from antenna to field sensor.

For an 800 MHz cell phone transmitting at +28 dBm (0.6W), the electric field 3” from the antenna is estimated to be around 60 V/m.

Figure 21 shows the equivalent circuit of the RF interference scenario, with the PSoC configured to run CapSense. Internal diodes protect the PSoC from ESD events up to 2 KV.

Figure 21. Diodes at Input of PSoC Provide ESD Protection
The resonant effects of a circuit trace form the receiver antenna. A quarter wavelength trace is an efficient antenna. Figure 22 shows the length of a quarter wavelength antenna versus frequency.

Figure 22. Quarter Wavelength Trace is an Efficient Antenna

For a low level RF signal, the CapSense circuit operates with no effect on the digital output of the system, since low levels of RF look similar to background noise and are ignored by the system. When the RF power increases, the CapSense counts are offset a constant amount that is set by the power level of the interference. The RF signal is AC but the effect on CapSense counts is DC due to the diodes on the CapSense input. A positive shift in counts causes false button presses. A negative shift prevents real button presses from being sensed. The finger and noise thresholds of the CapSense User Module allow normal operation in the presence of small shifts in the counts. For higher levels of RF interference, other measurements need to be taken. Following are two solutions.

- **RF Solution #1**—Coordinate RF and CapSense: If the source of the interference is part of the same system in which CapSense is embedded, then disable CapSense when RF is transmitting. One pin on the PSoC is assigned to monitor a Transmit_Enable signal. CapSense counts continue to be affected by the high power RF, but counts are only valid with the transmitter turned off.

- **RF Solution #2**—Damp the Resonance: Resistors placed in series with the CapSense input damps the resonance of each trace. The recommended series resistance added to the CapSense inputs is 560 ohms. Communication lines, I2C and SPI, benefit from 300 ohms in series.

ESD Considerations

The electrostatic voltage on the human body reaches 15 KV when the humidity is low. The type of clothes worn by the CapSense user makes a difference on how this voltage goes, as shown in Figure 23.

Figure 23. Electrostatic Voltage on a Human Body vs. Relative Humidity and Material Type

Table 3 shows the minimum thickness required to withstand 12 KV for common overlay materials. The overlay in the CapSense system protects the PSoC from permanent damage when the thickness guidelines of the table are followed. A layer of Kapton tape works well in applications needing extra ESD protection.

Table 3. Breakdown Voltage of Overlay Materials and Minimum Thickness to Prevent Breakdown

<table>
<thead>
<tr>
<th>Material</th>
<th>Breakdown Voltage [V/mm]</th>
<th>Min. Overlay Thickness at 12 KV [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1200 – 2800</td>
<td>10</td>
</tr>
<tr>
<td>Glass – Common</td>
<td>7900</td>
<td>1.5</td>
</tr>
<tr>
<td>Glass - Borosilicate (Pyrex)</td>
<td>13,000</td>
<td>0.9</td>
</tr>
<tr>
<td>Formica</td>
<td>18,000</td>
<td>0.7</td>
</tr>
<tr>
<td>ABS</td>
<td>16,000</td>
<td>0.8</td>
</tr>
<tr>
<td>Acrylic (Plexiglass)</td>
<td>13,000</td>
<td>0.9</td>
</tr>
<tr>
<td>Polycarbonate (Lexan)</td>
<td>16,000</td>
<td>0.8</td>
</tr>
<tr>
<td>PET Film (Mylar)</td>
<td>280,000</td>
<td>0.04</td>
</tr>
<tr>
<td>Polyimide Film (Kapton)</td>
<td>290,000</td>
<td>0.04</td>
</tr>
<tr>
<td>FR-4</td>
<td>28,000</td>
<td>0.4</td>
</tr>
<tr>
<td>Wood – Dry</td>
<td>3900</td>
<td>3</td>
</tr>
</tbody>
</table>
Summary
The best practices for CapSense designs presented in this application note enable engineers to successfully add capacitive sensing features to their products.

References
1. Application Note AN2233a, “Capacitive Switch Scan,” Cypress Semiconductor
3. Application Note AN2360, “Power Consumption and Sleep Considerations with CapSense,” Cypress Semiconductor
4. Application Note AN2318, “EMC Design Considerations for PSoC CapSense Applications,” Cypress Semiconductor
About the Author

Name: Mark Lee
Title: Principal Application Engineer
Background: Ph.D.E.E. 1992 University of Washington

Computer Aided Modeling of the Dielectric Properties of Materials

Experienced in aerospace, medical, and computer industries, focusing on new product development. Holder of several patents.

Cypress employee since 2005.

Contact: olr@cypress.com

In March of 2007, Cypress recataloged all of its application notes using a new documentation number and revision code. This new documentation number and revision code (001-xxxxx, beginning with rev. **), located in the footer of the document, will be used in all subsequent revisions.

PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable system-on-Chip," PSoC Designer, and PSoC Express are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein may be the property of their respective owners.

© Cypress Semiconductor Corporation, 2006-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.